Unit-5

CCPDS-R Case Study

This represents a detailed case study of a successful software project that
followed many of the techniques.

L]

Successful here means on budget, on schedule, and satisfactory to the
customer.

The Command Center Processing and Display System-Replacement
(CCPDS-R) project was performed for the U.S. Air Force by TRW Space and
Defense in Redondo Beach, California.

The entire project included systems engineering, hardware procurement, and
software development, with each of these three major activities consuming
about one-third of the total cost. The schedule spanned 1987 through 1994.
The software effort included the development of three distinct software
systems totaling more than one million source lines of code.

This case study focuses on the initial software development, called the
Common Subsystem, for which about 355,000 source lines were developed.
The Common Subsystem effort also produced a reusable architecture, a
mature process, and an integrated environment for efficient development of
the two software subsystems of roughly similar size that followed.

This case study therefore represents about one-sixth of the overall
CCPDS-R project effort.

Although this case study does not coincide exactly with the management
process presented in this book nor with all of today's modern technologies, it
used most of the same technigues and was managed to the same spirit and
priorities.

TRW delivered Key Points a An objective case study is a true indicator of a
mature organization and a mature project process. The software industry
needs more case studies like CGPDS-R.

The metrics histories were all derived directly from the artifacts of the
project's process. These data were used to manage the project and were

g,

Department of CSE Page 1 0of 9

¢ CCPDS-R was one of the 'pioneeFing projects that practiced many modern
management approaches. a This case study provides a practical context that
Is relevant to the techniques, disciplines.the system on budget and on

schedule, and the users got more than they expected.
o TRW was awarded the Space and Missile Warning Systems Award for

Excellence in 1991 for "continued, sustained performance in overall systems
engineering and project execution.”

o Anproject like CCPDS-R could be developed far more efficiently today. By
incorporating current technologies and improved processes, environments,
and levels of automation, this project could probably be built today with equal
quality in half the time and at a quarter of the cost.

Modern Project Profiles

Differences in workflow cost allocations between a conventional
processanda modern process

-~

[soFTWARE CONVENTIONAL MODERN

ENGINEERING PROCESS PROCESS

WORKFLOWS EXPENDITURES EXPENDITURES
Management 5% 10%
Environment 5% 10%

., Requirements 5% 10% ;

Design 10% 15%
Implementation 30% 25%
Assessment 40% 25%
Deployment 5% 5%
Total 100% 100%

Continuous Integration

Department of CSE Page 2 of 9

The continuous integration inherent in an iterative development process
enables better insight into quality trade-offs.

System characteristics that are largely inherent in the architecture (performance, fault

tolerance, maintainability) are tangible earlier in the process, when issues are still
correctable

Early Risk Resolution

Conventional projects usually do the easy stuff first, modern process attacks the
important 20%

of the requirements, use cases, components, and risks.

The effect of the overall life-cycle philosophy on the 80/20 lessons provides a useful
risk management

perspective.

80% of the engineering is consumed by 20% of the requirements.
80% of the software cost is consumed by 20% of the components
80% of the errors are caused by 20% of the components

80% of the progress is made by 20% of the people.

Evolutionary Requirements

Conventional approaches decomposed system requirements into subsystem
requirements, subsystem requirements into

component requirements, and component requirements into unit requirements
The organization of requirements was structured so traceability was simple
Most modern architectures that use commercial components,

legacy components, distributed resources and object-oriented methods are not
trivially traced to the requirements they satisfy.

Department of CSE Page 3 of 9

The artifacts are now intended to evolve along with the process,with more and more
fidelity as the progresses life-cycle and the requirements understanding matures

Teamwork among stakeholders

Many aspects of the classic development process cause stakeholder relationships to
degenerate into mutual distrust, making it difficult to balance requirements, product
features, and plans

It also requires a development organization that is focused on achieving customer
satisfaction and high product quality in a profitable manner

The transition from the exchange of mostly paper artifacts to demonstration of
intermediate results is one of the crucial mechanisms for promoting teamwork among
stakeholders

Top 10 Software Management Principles

1. Base the process on an architecture-first approach — rework rates remain stable
over the project life cycle.

2.Establish an iterative life-cycle process that confronts risk early

3.Transition design methods to emphasize component-based development
4.Establish a change management environment — the dynamics of iterative
development, including concurrent workflows by different teams working
on shared artifacts, necessitate highly controlled baselines

5.Enhance change freedom through tools that support round-trip engineering

Department of CSE Page 4 of 9

Software Management Best Practices:

o There Is nine hest practices:

1. Formal risk management

2. Agreement on interfaces

3. Formal inspections

4, Metric-based scheduling and management

. Binary quality gates at the inch-pehble level

6. Program-wide visibility of progress versus plan.

1. Defect tracking against quality targets

8. Configuration management

9. People-aware management accountability

Department of CSE

Page 5 of 9

Next-Generation Software Economics
Next-Generation Cost Models

o Software experts hold widely varying opinions about software economics and its
manifestation in software cost estimation models:

source lines of code function points
poductiy \ / "y

measures VERSUS measures
Java / Ct+
object-oriented functionally oriented

o [twill be difficult to improve empirical estimation models while
the project data going into these models are noisy
and highly uncorrelated, and are based on differing process
and technology foundations.

"Cnftwara Praiart Mananamant” Walkaor ani1?

Department of CSE Page 6 of 9

o.50me of today's popular software cost models are not well matched

toan iterative software process focused an architecture-first approach
o lany cost estimators are stil using a conventional process experience

base to estimate a modem project profile
o A next-generation software cost model should explictly separate

architectural engineering from application production,
Just as an architecture-first process does.
o TWO major improvements in next-generation software

cost estimation models:
o Separation of the engineering stage from the production stage

willforce estimators to differentiate between architectural scale and implementation

Size,
oRigorous design notations such as UML will offer an opportunity

to define units of measure for scale that are more standardized and
therefore can be automated and tracked.

Department of CSE Page 7 of 9

Modern Software Economics

¢ Changes that provide a good description of what an organizational manager
should strive for in making the transition to a modern process:

'1 Finding and fixing a software pmblem after delivery

costs 100 times more |than fixing the problem in early design phases

2 You can compress software development schedules 25% of nominal, but
no more.

3. For every $1 you spend on development,
you will spend $2 on maintenance.

4. Software development and maintenance costs are primarily
a function of the number of source lines of code.

5. Variations among people account for the biggest differences
in software productivity.

6. The overall ratio of software to hardware cosis
is still growing — in 1955 it was 15:85; in 71985 85:75.

7. Only about 15% of software development effort
is devoted to programming.

8. Software systems and products typically cost 3 times
as much per SLOC as individual software programs.

9. Walkthroughs catch 60% of the errors.

70. 80% of the contribution comes from 20% of the
contributors.

Department of CSE Page 8 of 9

Modern Process Transitions
Culture Shifts

e Several culture shifts must be overcome to transition successfully to a

modern software management process:
e | ower level and mid-level managers are performers

e Requirements and designs are fluid and tangible

e Good and bad project performance is much more obvious earlier

iny}{artllj gc%’%'?e less important early, more important later
e Real issues are surfaced and resolved systematically
e Quality assurance is everyone’s job, not a separate discipline
e Performance issues arise early in the life cycle

e [nvestments in automation is necessary
e Good software organization should be more profitable

Denouement
|

e Good way to transition to a more mature iterative development process
that supports automation technologies

and modern architectures is to take the following shot:
e Ready.

Do your homework. Analyze modern approaches and technologies.
Define your process. Supportit with mature environments, tools,
and components. Plan thoroughly.

e Aim.
Selecta critical project. Staff it with the right team
of complementary resources and demand improved results.

e Fire.
Execute the organizational and project-level plans with vigor and
follow-through.

Department of CSE Page 9 of 9

